Pohang [South Korea]: In collaboration with Dr Hyo Jeong Kim of the Korea Research Institute of Chemical Technology, a research team led by Professor Hyung Joon Cha, Woo Hyung Park, and PhD candidate Jae Yun Lee from the Department of Chemical Engineering at POSTECH has created a bioadhesive for skin grafting that contains two different types of drugs.
The findings of the research were published in the journal 'Chemical Engineering Journal'.
The research team developed the bioadhesive by introducing allantoin and epidermal growth factor in a mussel adhesive protein coacervate. Upon application of this bioadhesive, the two drugs are successively released, according to the stage of the wound healing process, and regenerate the skin.
Results of the study indicate that the wound area recovered more efficiently than when treated with sutures used in current skin grafting. In particular, loss of hair follicles in the transplanted area was minimal, while collagen and major skin factor levels were effectively revived.
A characteristic of this bioadhesive is that, unlike sutures, it leaves minimal scarring on the wound area and is harmless to the human body because it utilizes mussel adhesive protein, a biomaterial.
Professor Hyung Joon Cha explained, "We used the mussel adhesive protein -- a biomaterial that originated in Korea -- in the newly developed bioadhesive for skin grafting that resulted in minimal scarring and promoted skin regeneration." He added, "This new system will be effectively applied in the transplantation of various affected areas requiring tissue regeneration."
This study was supported by the Health Technology Research and Development Project of the Ministry of Health and Welfare of Korea.
The technology of the mussel adhesive protein (MAP) has undergone a technology transfer to Nature Gluetech Co. Ltd, and among these, "FIxLight," a medical adhesive for extra-epidermal soft tissue, is undergoing human clinical trials. The commercialization and development of the medical adhesive coacervate are in progress. (ANI)